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A characterization of the function 𝝅(𝒙) 

and a demonstration of the twin primes conjecture 

By 
 

Marco Bortolamasi* 
 

Abstract 

A specific property of the function 𝜋(𝑥) is provided, resulting in a solution to the twin primes conjecture. 

A new characterization of twin primes is provided, constituting one of the few criteria available in literature.  

The result lends itself  well to processing  further applications and insights. 

   

Key words: twin primes, characterization, function 𝜋(𝑥), twin primes conjecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             
* Order of Engineers of the province of Modena, c/o Department of Engineering E. Ferrari, University of  Modena and Reggio 
Emilia,  P. Vivarelli 10, 41125 MODENA; e-mail: bortolamasim@libero.it. 



Preprint 
Do not duplicate or distribute without a written permission from the author 

 

2 
 

 

Notation 

In addition to the symbols commonly used: 

ቔ
୶

୷
ቕ =  floor function of   

୶

୷
 , y≠0  

P = set of primes 

I°(n) = {i ∶    odd, with 3 ≤  i ≤ n},  

ቄ
୶

୷
ቅ = fractional part function of  

୶

୷
 .  

 

Introduction 

Two primes are twin primes if their difference is 2. It’s still a conjecture the Euclid’s statement about the 

existence of infinitely many twin primes. Conditions are known instead, in order to prove that a pair (p-2, p) 

is a pair of twin primes. 

In 1949 /3/ P.A. Clement demonstrated that  integers n, n+2 are a pair of twin primes if and only if: 
 

4 [(n− 1)! + 1]≡ −n    (mod n(n+2)) 

In 1963 /8/  F. Pellegrino demonstrated the following theorem, deriving from Wilson’s theorem: 
 
Two natural numbers p-2 e p, with  p ≥ 5, are both primes if and only if: 
 

4 ቈ
(𝑝 − 3)!

𝑝 − 2
቉ ≡ −5     (𝑚𝑜𝑑. 𝑝) 

In 2004 S.M. Ruiz /11/ demonstrated that:  
 

For odd n > 7, the pair (p, p+2) of integers are twin primes if and only if:  

∑ ቀቔ
௣ାଶ

௜
ቕ − ቔ

௣ାଵ

௜
ቕ + ቔ

௣

௜
ቕ − ቔ

௣ିଵ

௜
ቕቁ

௝
௜ ௢ௗௗ = 2          

where the summation is over odd values of 𝑖 through  𝑗 = ⌊𝑝/3⌋ 

In this paper is presented an interesting property of the function π(x) enabling to prove that the pairs of twin 

primes are infinitely many and so giving a solution to the ancient conjecture of the twin primes. 
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Now we establish one lemma which will become useful in proving Theorem 1. 

Lemma1 

Let p ∈ 𝑃 then  p+2 ∈ 𝑃 if and only if: 

∑ ቀቔ
௣ାଶ

௜
ቕ − ቔ

௣ାଵ

௜
ቕቁ௜ = 0 con  i ∈ 𝐼°(𝑝)            (1) 

Proof 

If  p+2  ∈  P then for all natural numbers i:   1 < i ≤ p : 

ቔ
௣ାଶ

௜
ቕ − ቔ

௣ାଵ

௜
ቕ = 0          (2) 

In fact it is well known that:   ቔ
୬

୧
ቕ − ቔ

୬ିଵ

୧
ቕ = 0  if i don’t divide n ∈ N, n > 0     

with i ∈ N  i ≠ 1  i < 𝑛 

Hence any prime verifies (2) and consequently the statement because any term of the summation (1) is 
greater than or equal to zero.  

At the same time: 

If   ቔ
௣ାଶ

௜
ቕ − ቔ

௣ାଵ

௜
ቕ = 0   ∀ i ∈ I°(p)  then   p+2  ∈ P 

Since p+2 is not divisible by any odd number between 3 and p and at the same time it’s not divisible by any 
even number since p+2 is odd.  ▄ 

 

Theorem1 

Let 𝑛 ∈ 𝑁, 𝑛 > 1, and let p the last prime lower than or equal to n such that (p, p+2) is a pair of primes, 

then: 

𝜋(𝑛) = ∑ ቀቄ
௣ାଶ

௣̅೔
ቅ − ቄ

௣ାଵ

௣̅೔
ቅቁ

௣
ଶ       for each prime  𝑝̅௜ ≤  𝑝 ≤ 𝑛 ∈ 𝑁      (3) 

Proof 

First part:  

We establish that  ቄ
୮ାଶ

୧
ቅ − ቄ

୮ାଵ

୧
ቅ  = 1    ∀ i ∈ I°(p)     (4)  

Let p ∈ P and consider a generic term of the summation (1) indicating the necessary and sufficient condition 
for having p, p+2 ∈ P. 

Since each addend is greater than or equal to zero, eq. (1) becomes: 

ቔ
୮ାଶ

୧
ቕ − ቔ

୮ାଵ

୧
ቕ = 0   ∀ i ∈ I°(p) (5) 

We observe that: 
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p+2=kଵ i + qଵ    con i > qଵ > 0                       

p+1=kଶ i + qଶ    con i > qଶ  > 0  

Since it must be  kଵ = kଶ  (eq. 5), it follows that for any 𝑝 ∈ P such that  p+2 ∈ P  eq. (5) leads to:    

qଶ  –  qଵ  = 1  i.e.   ቄ
୮ାଶ

୧
ቅ − ቄ

୮ାଵ

୧
ቅ =  1  (5b) 

We have established that for p   ∈  P then p+2 ∈ P if and only if the difference of fractional parts (4) 
calculated  for any odd number between 3 and n, is equal to 1. 

Second part: 

Eq. (5) and eq. (4), can be restricted to the primes pത ∈ I°(p), i.e. to the primes between 3 and p. 

Proof  

If   ∑ ቀቔ
୮ାଶ

୧
ቕ − ቔ

୮ାଵ

୧
ቕቁ୧ = 0  for each odd  i ∈ I°(p)   

Obviously the same holds for each prime  p ഥ ∈ I°(p): 

ቔ
୮ାଶ

୮ഥ
ቕ − ቔ

୮ାଵ

୮ഥ
ቕ = 0   

At the same time: 

Let p ഥ ∈ I°(p), if ቔ
୮ାଶ

୮ഥ
ቕ − ቔ

୮ାଵ

୮ഥ
ቕ = 0     (6) 

Each of his multiple lower than or equal to p verifies the same condition: 

ඌ
𝑝 + 2

𝑝̅ 𝑛
ඐ − ඌ

𝑝 + 1

𝑝̅ 𝑛
ඐ = 0 

In fact: 

kതଵ =
୮ାଶି୯ഥభ

୬∙୮ഥ
   and    kതଶ =

୮ାଵି୯ഥమ

୬∙୮ഥ
 

kതଵ =
୩భ ∙  ୮ഥା ୯భష ୯ഥభ

୬∙୮ഥ
   and     kതଶ =

୩మ ∙  ୮ഥା ୯మష ୯ഥమ

୬∙୮ഥ
 

Hence: 

kതଵ =
୩భ ∙  ୮ഥ

୬∙୮ഥ
+  

୯భష ୯ഥభ

୬∙୮ഥ
   e     kതଶ =

୩మ ∙  ୮ഥ

୬∙୮ഥ
+  

୯మష ୯ഥమ

୬∙୮ഥ
 

But kଵ = kଶ   (by assumption (6))  

hence   qଵି qതଵ =  qଶି qതଶ 

and since qଵ − qଶ =  1  from eq. (5b) it follows that:   qതଵ −  qത ଶ = 1  

Hence, if  kଵ = kଶ then  kതଵ =  kതଶ 

As a consequence, if it is verified eq. (6), the same condition holds for each number i ∈ I°(p). 
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We have established that for p ∈ P, necessary and sufficient condition for  p+2 ∈ P is: 

ቄ
௣ାଶ

௣̅
ቅ − ቄ

௣ାଵ

௣̅
ቅ = 1   for each prime  𝑝 ഥ  ≤  𝑝   (7) 

Third Part: 

The case with  pത୧ = 2 is a consequence of the demonstration of lemma 1:   

Since number 2 doesn’t divide p+2 (odd number): 

ቔ
୮ାଶ

ଶ
ቕ − ቔ

୮ାଵ

ଶ
ቕ  = 0 

Hence the demonstration of Th.1 first part, leads to:   

൜
p + 2

2
ൠ − ൜

p + 1

2
ൠ = 1 

We have established that for ∈ P such that p+2 ∈ P the difference of the fractional parts (7) calculated for 

each prime lower than or equal to p, is always equal to 1.  

It follows that the summation of the fractional parts (7) ‘counts’ exactly the number of primes lower than 

or equal to a given number n ∈ 𝑁  n > 1. 

In other words theorem1 establishes that the number of primes lower than or equal to a given number n 

∈ 𝑁  n > 1 is the summation of the difference (7) of the fractional parts of p+2 ∈ 𝑃 e p+1 for each prime 

lower than or equal to n. ▄ 

Example 

For n=30, the last pair of twin primes is (29 31) 

Difference of  fractional parts (7) 
1 0 
2 1 
3 1 
5 1 
7 1 
9 1 

11 1 
13 1 
15 1 
17 1 
19 1 
21 1 
23 1 
25 1 
27 1 
29 1 

 



Preprint 
Do not duplicate or distribute without a written permission from the author 

 

6 
 

It’s evident that counting the primes lower than or equal to n = 30 is counting the fractional part 

according to (7). 

Theorem2: Twin pairs are infinitely many.  

Proof 

Let’s consider the limit: 

lim୬→ାஶ π(p୬) = lim
୬→ାஶ

∑ ቀቄ
୮౤ାଶ

୮ഥ౟
ቅ − ቄ

୮౤ାଵ

୮ഥ౟
ቅቁ

୮౤
ଶ        with  𝑝௡, 𝑝௡ + 2 ∈ P  and  pത୧ ≤ p୬ ≤ n 

For the divergence of the first side of the equation, we have: 

lim
୬→ାஶ

∑ ቀቄ
୮౤ାଶ

୮ഥ౟
ቅ − ቄ

୮౤ାଵ

୮ഥ౟
ቅቁ

୮౤
ଶ = +∞            (8) 

But considering eq. (7), it is possible if only there exist infinitely many twin primes. 

In fact let’s suppose (reductio ad absurdum) that the pairs of twin primes are finite in number and let  𝑝̇  the 

last prime such that (ṗ, ṗ + 2) is a pair of primes. 

In this case by definition of fractional part function: 

൜
ṕ + 2

pത୧
ൠ =

ṕ + 2

pത୧
− ඌ

ṕ + 2

pത୧
ඐ 

But:   lim୬→ାஶ pనഥ =  lim୬→ାஶ p୬ =  +∞     

In fact 𝑝௡ is a monotonically increasing sequence hence the limit exists and the limit is not finite since in 

this case for each number n ∈ N  we have  p୬ < 𝑀 ∈ 𝑁 .   

But this is in contradiction to Tchebycheff’s1 theorem.  Hence   lim୬→ାஶ p୬ =  + ∞ . 

Hence:  lim୬→ା∞ ቄ
୮́ାଶ

୮ഥ౟
ቅ = lim

୬→ା∞

୮́ାଶ

୮ഥ౟
−  lim

୬→ା∞
ቔ

୮́ାଶ

୮ഥ౟
ቕ = 0 

The same procedure applied to p+1 leads to: 

lim୬→ାஶ ቄ
୮́ାଵ

୮ഥ౟
ቅ = lim

୬→ାஶ

୮́ାଵ

୮ഥ౟
−  lim

୬→ାஶ
ቔ

୮́ାଵ

୮ഥ౟
ቕ= 0  

Hence we have a result in contradiction to the assumption that the pairs of twin primes are finite in 

number. The statement of the theorem follows. ▄ 

 

 

 
                                                             
1 Bertrand-Tchebychev’s theorem /11/ statements that for every integer n > 1 there is always at least one prime p such that: n < p < 
2n  
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On the basis of theorem1, it is easy to demonstrate a new characterization of twin primes: 

Corollary1 

Be p a prime, 𝑝 > 7, necessary and sufficient condition for 𝑝 + 2 ∈  𝑃  is:  

ෑ ൜
𝑝 + 2

𝑝̅௜
ൠ

⌊௣/ଷ⌋

ଷ

≠ 0                       (9)          

Proof 

If  p+2 ∈ 𝑃  then  ቄ
௣ାଶ

௣̅೔
ቅ ≠ 0   ∀ 𝑝̅௜  ≤ 𝑝  and eq.(9) is proved. 

At the same time if  ቄ
௣ାଶ

௣̅೔
ቅ ≠ 0   ∀  𝑝̅௜ between 3 and ቔ

௣

ଷ
ቕ  then: 

p+2 = k pത + q     with  pത > q > 0 

Then: 

p+1 = k pത + q-1    with  q-1 ≥ 0 

Hence  ቔ
௣ାଶ

௣̅೔
ቕ = ቔ

௣ାଵ

௣̅೔
ቕ ∀ 𝑝̅௜  between 3 and  ቔ

௣

ଷ
ቕ   

And from the theorem of  S.M. Ruiz2  we have that  p + 2 ∈  P  i.e.  p, p + 2 ∈  P. ▄ 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             
2 If  i = 1 we have: ቔ

௣

௜
ቕ − ቔ

௣ିଵ

௜
ቕ = 2   hence if    𝑖 ≥ 3    ∑ ቀቔ

௣ାଶ

௜
ቕ − ቔ

௣ାଵ

௜
ቕ ቁ

௝
௜ ௢ௗௗ. = 0    𝑗 ≤ ⌊𝑝/3⌋ 
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The statement of the Corollary1 leads to Corollary2: 

A generalization to other prime k-tuples3 

Let p a prime, necessary and sufficient condition for {𝑝, 𝑝 + 𝑖 , 𝑝 + 𝑗, … ,  𝑝 + 𝑘}   ∈ 𝑃  is: 

∏ ቄ
௡∙(௡ା௜)∙(௡ା௝)….(௡ା௞)

௣೔
ቅ

ቔ
೙శೖ

య
ቕ

ଶ ≠ 0   with  2 ≤  𝑝௜ ≤ ቔ
௡ା௞

ଷ
ቕ 

Proof 

From Corollary 1, we have4: 

∏ ቄ
௡

௣೔
ቅ ∙

ቔ
೙శೖ

య
ቕ

ଶ ቄ
௡ା௜

௣೔
ቅ ∙ ቄ

௡ା௝

௣೔
ቅ ∙ … ∙ ቄ

௡ା௞

௣೔
ቅ ≠ 0   with  2 ≤  𝑝௜ ≤ ቔ

௡ା௞

ଷ
ቕ    (10) 

If  {𝑝, 𝑝 + 𝑖 , 𝑝 + 𝑗, … ,  𝑝 + 𝑘}  are not divisible by p୧ then also the product: 

 n ∙ (n + i) ∙ (n + j) … . (n + k) is not divisible by p୧. 

At the same time if  n ∙ (n + i) ∙ (n + j) … . (n + k) then: 

𝑝, 𝑝 + 𝑖 , 𝑝 + 𝑗, … , 𝑝 + 𝑘 are not divisible by p୧. 

The statement of corollary 2 follows. ▄ 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             
3 A finite collection of values with a repeatable pattern of differences between primes 
4 The summation starts with 𝑝௜  = 2 to erase even numbers. This is not necessary in eq. (9) since p, p+2 are odd.   
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Example # 1 

Let′s consider p = 29  with p+2 = 31  ∈ P  where  ቔ
୬

ଷ
ቕ = 9   i.e.   pത୧= 2,3,5,7 

ቄ
௣ାଶ

ଷ
ቅ = 1    ቄ

௣ାଶ

ହ
ቅ = 1    ቄ

௣ାଶ

଻
ቅ = 3  

ෑ ൜
𝑝 + 2

𝑝̅௜
ൠ

⌊௣/ଷ⌋

ଷ

≠ 0             

Let′s now consider p = 31  with p+2 = 33  ∈ P  where  ቔ
୬

ଷ
ቕ = 9   i.e.   pത୧= 2,3,5,7 

ቄ
௣ାଶ

ଷ
ቅ = 0    ቄ

௣ାଶ

ହ
ቅ = 3    ቄ

௣ାଶ

଻
ቅ = 5 

In this case: 

ෑ ൜
𝑝 + 2

𝑝̅௜
ൠ

⌊௣/ଷ⌋

ଷ

= 0    

Example # 2 

Let′s consider {11, 13 , 17,  19}   where:  𝑛 + 𝑘 = 19   and   ቔ
௡ା௞

ଷ
ቕ = 6   i.e.   𝑝̅௜=2,3,5  

𝑛 ∙ (𝑛 + 𝑖) ∙ (𝑛 + 𝑗) … . (𝑛 + 𝑘) =  4689 

From eq. 10: 

ෑ ቊ
𝑛 ∙ (𝑛 + 𝑖) ∙ (𝑛 + 𝑗) … . (𝑛 + 𝑘)

𝑝௜
ቋ

ቔ
೙శೖ

య
ቕ

ଷ

 = 4 

Now let′s consider {11, 13 , 16,  19}   where:  𝑛 + 𝑘 = 19   and   ቔ
୬ା୩

ଷ
ቕ = 6   i.e.   p୧=2,3,5  

𝑛 ∙ (𝑛 + 𝑖) ∙ (𝑛 + 𝑗) … . (𝑛 + 𝑘) =  4372 

From eq. 10: 

ෑ ቊ
𝑛 ∙ (𝑛 + 𝑖) ∙ (𝑛 + 𝑗) … . (𝑛 + 𝑘)

𝑝௜
ቋ

ቔ
೙శೖ

య
ቕ

ଷ

 = 0 
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